1,651 research outputs found

    The emerging role of anti-CD25 directed therapies as both immune modulators and targeted agents in cancer

    Get PDF
    CD25 (also termed IL2RA) forms one component of the high‐affinity heterotrimeric interleukin 2 (IL2) receptor on activated T cells. Its affinity for IL2 and cellular function are tightly regulated and vary in different cell types. The high frequency of CD25 on the surface of many different haematological tumour cells is now well established and, apart from its prognostic significance, CD25 may be present on leukaemic stem cells and enable oncogenic signalling pathways in leukaemic cells. Additionally, high CD25 expression in activated circulating immune cells and Tregs is a factor that has already been exploited by IL2 immunotherapies for treatment of tumours and autoimmune disease. The relative clinical safety and efficacy of administering anti‐CD25 radioimmunoconjugates and immunotoxins in various haematological tumour indications has been established and clinical trials of a novel CD25‐directed antibody drug conjugate are underway

    Object-oriented domain specific compilers for programming FPGAs

    No full text
    Published versio

    Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood

    Get PDF
    The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 A degrees C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C-O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa-Flynn-Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30

    Antiretroviral Therapy outcomes among adolescents and youth in rural Zimbabwe

    Get PDF
    Around 2 million adolescents and 3 million youth are estimated to be living with HIV worldwide. Antiretroviral outcomes for this group appear to be worse compared to adults. We report antiretroviral therapy outcomes from a rural setting in Zimbabwe among patients aged 10-30 years who were initiated on ART between 2005 and 2008. The cohort was stratified into four age groups: 10-15 (young adolescents) 15.1-19 years (adolescents), 19.1-24 years (young adults) and 24.1-29.9 years (older adults). Survival analysis was used to estimate rates of deaths and loss to follow-up stratified by age group. Endpoints were time from ART initiation to death or loss to follow-up. Follow-up of patients on continuous therapy was censored at date of transfer, or study end (31 December 2008). Sex-adjusted Cox proportional hazards models were used to estimate hazard ratios for different age groups. 898 patients were included in the analysis; median duration on ART was 468 days. The risk of death were highest in adults compared to young adolescents (aHR 2.25, 95%CI 1.17-4.35). Young adults and adolescents had a 2-3 times higher risk of loss to follow-up compared to young adolescents. When estimating the risk of attrition combining loss to follow-up and death, young adults had the highest risk (aHR 2.70, 95%CI 1.62-4.52). This study highlights the need for adapted adherence support and service delivery models for both adolescents and young adults

    Estimated GFR reporting is associated with decreased nonsteroidal anti-inflammatory drug prescribing and increased renal function

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used; however, they are also nephrotoxic with both acute and chronic effects on kidney function. Here we determined NSAID prescribing before and after estimated GFR (eGFR) reporting and evaluate renal function in patients who used NSAIDs but stopped these after their first eGFR report. A population-based longitudinal analysis using a record-linkage database was conducted with the GFR estimated using the four-variable equation from the MDRD study and analyzed by trend test, paired t-test, and logistic regression modeling. Prescriptions for NSAIDs significantly decreased from 39,459 to 35,415 after implementation of eGFR reporting from the second quarter of 2005 compared with the first quarter of 2007. Reporting eGFR was associated with reduced NSAID prescriptions (adjusted odds ratio, 0.78). NSAID prescription rates in the 6 months before April 2006 were 18.8, 15.4, and 7.0% in patients with CKD stages 3, 4, and 5 and 15.5, 10.7, and 6.3%, respectively, after eGFR reporting commenced. In patients who stopped NSAID treatment, eGFR significantly increased from 45.9 to 46.9, 23.9 to 27.1, and 12.4 to 26.4 ml/min per 1.73 m(2) in 1340 stage 3 patients, 162 stage 4 patients, and 9 stage 5 patients, respectively. Thus, NSAID prescribing decreased after the implementation of eGFR reporting, and there were significant improvements in estimated renal function in patients who stopped taking NSAIDs. Hence, eGFR reporting may result in safer prescribing

    Near-field emission profiling of Rainforest and Cerrado fires in Brazil during SAMBBA 2012

    Get PDF
    This discussion paper is a preprint. A revision of this manuscript was accepted for the journal Atmospheric Chemistry and Physics (ACP).We profile trace gas and particulate emissions from near-field airborne measurements of discrete smoke plumes in Brazil during the 2012 biomass burning season. The South American Biomass Burning Analysis (SAMBBA) Project conducted during September and October 2012 sampled across two distinct fire regimes prevalent in the Amazon Basin. Combined measurements from a Compact Time Of Flight Aerosol Mass Spectrometer (C-ToF-AMS) and a Single Particle Soot Photometer (SP2) are reported for the first time in a tropical biomass burning environment. Emissions from a mostly-smouldering rainforest wildfire in Rondonia state and numerous smaller flaming Cerrado fires in Tocantins state are presented. While the Cerrado fires appear to be representative of typical fire conditions in the existing literature, the rainforest wildfire likely represents a more extreme example of biomass burning with a bias towards mostly-smouldering emissions. We determined fire integrated modified combustion efficiencies, emission ratios and emission factors for trace gas and particulate components for these two fire types, alongside aerosol microphysical properties. Seven times more black carbon was emitted from the Cerrado fires per unit of fuel combustion (EFBC of 0.13 ± 0.04 g kg−1) compared to the rainforest fire (EFBC of 0.019 ± 0.006 g kg−1) and more than six times the amount of organic aerosol was emitted from the rainforest fire per unit of fuel combustion (EFOC of 5.00 ± 1.58 g kg−1) compared to the Cerrado fires (EFOC of 0.82 ± 0.26 g kg−1). Particulate phase species emitted from the fires sampled are generally lower than those reported in previous studies and in emission inventories, which is likely a combination of differences in fire combustion efficiency and fuel content, along with different measurement techniques. Previous modelling studies focussed on the biomass burning season in tropical South America have required significant scaling of emissions to reproduce in-situ and satellite aerosol concentrations over the region. Our results do not indicate that emission factors used in inventories are biased low, which could be one potential cause of the reported underestimates in modelling studies. This study supplements and updates trace gas and particulate emission factors for fire type specific biomass burning in Brazil for use in weather and climate models. The study illustrates that initial fire conditions can result in substantial differences in terms of their emitted chemical components, which can potentially perturb the Earth system.We would like to acknowledge the substantial efforts of the whole SAMBBA team before, during and after the project. Airborne data was obtained using the BAe-146-301 Atmospheric Research Aircraft (ARA) flown by Directflight Ltd and managed by the Facility for Airborne Atmospheric Measurements (FAAM), which is a joint entity of the Natural Environment Research Council (NERC) and the Met Office. Active fire data was produced by the University of Maryland and acquired from the online Fire Information for Resource Management System (FIRMS; https://earthdata.nasa.gov/data/near-real-time-data/firms/abouts; specific product: MCD14ML). E. Darbyshire was supported by NERC studentship NE/J500057/1 and NE/K500859/1. This work was supported by the NERC SAMBBA project NE/J010073/1

    Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012

    Get PDF
    This is the final version. Available from European Geosciences Union (EGU) / Copernicus Publications via the DOI in this record. Data availability: All raw time series data used to derive the emission ratios and factors from the FAAM research aircraft are publicly available from the Centre for Environmental Data Analysis website (http://www.ceda.ac.uk/, last access: 12 March 2018). Direct links to the flight data records are given in the reference list (Facility for Airborne Atmospheric Measurements, Natural Environment Research Council, and Met Office, 2014a, b).We profile trace gas and particulate emissions from near-field airborne measurements of discrete smoke plumes in Brazil during the 2012 biomass burning season. The South American Biomass Burning Analysis (SAMBBA) Project conducted during September and October 2012 sampled across two distinct fire regimes prevalent in the Amazon Basin. Combined measurements from a Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) and a Single Particle Soot Photometer (SP2) are reported for the first time in a tropical biomass burning environment. Emissions from a mostly smouldering tropical forest wildfire in Rondônia state and numerous smaller flaming Cerrado fires in Tocantins state are presented. While the Cerrado fires appear to be representative of typical fire conditions in the existing literature, the tropical forest wildfire likely represents a more extreme example of biomass burning with a bias towards mostly smouldering emissions. We determined fire-integrated modified combustion efficiencies, emission ratios and emission factors for trace gas and particulate components for these two fire types, alongside aerosol microphysical properties. Seven times more black carbon was emitted from the Cerrado fires per unit of fuel combustion (EFBC of 0.13±0.04ĝ€†gĝ€†kg-1) compared to the tropical forest fire (EFBC of 0.019±0.006gĝ€†kg-1), and more than 6 times the amount of organic aerosol was emitted from the tropical forest fire per unit of fuel combustion (EFOM of 8.00±2.53gĝ€†kg-1, EFOC of 5.00±1.58gĝ€†kg-1) compared to the Cerrado fires (EFOM of 1.31±0.42gĝ€†kg-1, EFOC of 0.82±0.26gĝ€†kg-1). Particulate-phase species emitted from the fires sampled are generally lower than those reported in previous studies and in emission inventories, which is likely a combination of differences in fire combustion efficiency and fuel mixture, along with different measurement techniques. Previous modelling studies focussed on the biomass burning season in tropical South America have required significant scaling up of emissions to reproduce in situ and satellite aerosol concentrations over the region. Our results do not indicate that emission factors used in inventories are biased low, which could be one potential cause of the reported underestimates in modelling studies. This study supplements and updates trace gas and particulate emission factors for fire-type-specific biomass burning in Brazil for use in weather and climate models. The study illustrates that initial fire conditions can result in substantial differences in terms of their emitted chemical components, which can potentially perturb the Earth system.NERCMet Offic
    corecore